
Battery Ren

Производство LiFePo4, Li-NMC аккумуляторов

ОБЩАЯ ИНСТРУКЦИЯ к тяговым LiFePO4 аккумуляторам

Оглавление

Оглавление3
1. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ4
2. ЭКСПЛУАТАЦИЯ АКБ5-6
3. ПОРЯДОК ЗАРЯДА АККУМУЛЯТОРНОЙ БАТАРЕИ7-8
4. индикация9-10
5. РЕКОМЕНДАЦИИ ПО ХРАНЕНИЮ АКБ10
6. ИНСТРУКЦИЯ К ПРИЛОЖЕНИЮ SMART BMS11-12
7. КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ АКБ13-14
8. ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ АКБ15-16
9. ТИПОВЫЕ НЕИСПРАВНОСТИ, МЕТОДЫ УСТРАНЕНИЯ17-18
10. ГАРАНТИЙНЫЕ УСЛОВИЯ19-20
11. ПРАВИЛА УТИЛИЗАЦИИ АКБ21

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- **1.1. Запрещается** замыкать выходные клеммы аккумулятора.
- **1.2. Нельзя использовать** батарею при ненадежном соединении между её выводами и клеммами проводов.

1.3. Порядок подключения и отключения:

- Все потребители энергии должны быть выключены перед подсоединением или отсоединением АКБ.
- Подключение: сначала плюсовая клемма, затем минусовая.
- Отключение: в обратной последовательности (сначала минус, потом плюс).

1.4. Установка батареи:

- АКБ должна быть устойчиво размещена, а в идеальном варианте надёжно зафиксирована.
- Клеммы должны быть плотно затянуты на полюсных выводах, но провода не должны находиться в натянутом состоянии. В случае плохого контакта под нагрузкой клемма начнет греться и расплавит корпус, что не является гарантийным случаем.

ЭКСПЛУАТАЦИЯ АКБ

2.1. Использование с интегрированным зарядным устройством.

Батарея может применяться в системах электропитания (водного транспорта, электротранспорта) со встроенным ЗУ только при исправной системе заряда. Напряжение, выдаваемое реле-регулятором, не должно превышать значение «Напряжение полного заряда», указанное в спецификации.

- 2.2. ЗАПРЕТ НА ИСПОЛЬЗОВАНИЕ В КАЧЕСТВЕ СТАРТОВОГО АКБ, **НЕ ПРЕДНАЗНАЧЕНА** ДЛЯ ПУСКА ДВИГАТЕЛЯ ПУСКОВЫЕ ТОКИ ЗНАЧИТЕЛЬНО **ПРЕВЫШАЮТ ДОПУСТИМЫЙ ТОК ВМЅ**, ЧТО ПРИВЕДЁТ К ВЫХОДУ АКБ ИЗ СТРОЯ.
- 2.3. Защита от влаги и пыли Корпус батареи обеспечивает **пыле- и влагозащиту**, но **не является герметичным.** Не допускайте:
 - **Прямых брызг воды** (например, от мойки под давлением);
 - Погружения в жидкость.

ЭКСПЛУАТАЦИЯ АКБ

2.4. Регулярное обслуживание

Не реже 1 раза в месяц выполняйте:

- Очистку от пыли и загрязнений.
- Проверку:
 - Надёжности крепления АКБ;
 - Качества контактов на клеммах.
- **Контроль уровня заряда.** При необходимости зарядите батарею (см. раздел 4).
- 2.5. Защита от глубокого разряда
 - Минимальное напряжение указано в спецификации. (таблица). BMS автоматически отключит АКБ при:
 - Критически низком или высоком напряжении;
 - Перегрузке по току.
- 2.6. Ограничение по напряжению в цепи

Запрещено использовать батарею в системах с напряжением **выше** её напряжения полного заряда.

2.7. Запрет на параллельное подключение

Не допускается совместная работа с АКБ **другого типа** (например, литиевой и свинцово-кислотной).

2.8. Особенности клемм

В зависимости от модели используются винтовые клеммы под М5 М8 и М10. Сила затягивания клеммы 0,6-0,9 Nm на полюсных выводах (в случае необходимости добавить шайбу).

ПОРЯДОК ЗАРЯДА АККУМУЛЯТОРНОЙ БАТАРЕИ

3.1. Требования к зарядному устройству

Используйте только специализированные зарядные устройства (соответствующие напряжению и токам для определенного типа химии). Убедитесь в соответствии техническим требованиям, указанным в руководстве к батарее.

Использования ЗУ с превышающим током или напряжением может привести выходу из строя бмс и бесконтрольному перезаряду ячеек в следствии чего возможно вздутие элементов и выкипанию электролита через подорванный клапан.

Максимальный ток зарядного устройства высчитывается по формуле 0.4С, где С — емкость АКБ (например, для АКБ 100Ач максимальный ток заряда будет равен 0.4 x 100 = 40A)

- 3.2. Температурный режим перед зарядкой
 - Оптимальный диапазон: от +5°C до +50°C (температура ячеек).
 - **Если температура неизвестна** (например, после хранения на холоде):
 - Выдержите АКБ при комнатной температуре (не менее **8 часов**) перед подключением к 3У.
 - НЕДОПУСКАЕТСЯ ЗАРЯД В ОТРИЦАТЕЛЬНУЮ ТЕМПЕРАТУРУ (ПРИВОДИТ К ДЕГРАДАЦИИ ЭЛЕМЕНТОВ И ВЫХОДА ИЗ СТРОЯ АКБ)

ПОРЯДОК ЗАРЯДА АККУМУЛЯТОРНОЙ БАТАРЕИ

- 3.3. Подключение зарядного устройства
 - 1. Подключите провода от 3У к болтовым клеммам батареи.
 - 2. Проверьте надежность соединения (не допускается люфт, плохой контакт)
 - 3. Строго соблюдайте **полярность** (плюс к плюсу, минус к минусу).
- 3.4. Работа системы BMS при заряде
 - **Автоматическое отключение:** срабатывает при достижении **3,65B** на любой ячейке LiFePO4 (для Li-NMC 4.2B; для LTO 2.8B).
 - Процесс балансировки (при наличие встроенного балансира):
 - 1. BMS выравнивает заряд "опережающей" ячейки относительно остальных.
 - 2. После балансировки заряд **возобновляется автоматически**.
 - Финальная стадия:
 - 1. Циклы "заряд-пауза" повторяются, пока все ячейки не достигнут 3,65В.
 - 2. Система самостоятельно прекращает заряд по завершении процесса.

После полного заряда АКБ запрещается его длительное хранение подключённым к зарядному устройству в виду особенностей LiFePO4 (ячейки усаживаются, что приводит к повторяющемуся циклу дозаряда, что снижает ресурс АКБ, и может привести к вздутию)

ИНДИКАЦИЯ

4. На корпусе кейса, в зависимости от модели может быть установлен смарт дисплей, экран куллометра или вольтметр. Из-за принципа работы вольтметра (параллельное подключение к АКБ) он не способен достаточно точно вычислять объем остаточного заряда. Мы рекомендуем опираться на показания напряжения, сравнивая с данными указанными в таблице ниже.

Состояние заряда (SOC)	12 В Напряжение аккумулятора (В)	24 В Напряжение батареи (В)	36 В Напряжение аккумулятора (В)	48 В Напряжение аккумулятора (В)	60 В Напряжение аккумулятора (В)	72 В Напряжение аккумулятора (В)
100 % до усадки	14,6	29,2	43,8	58,4	73	87,6
100 % после усадки	13,4	26,8	40,2	53,6	67	80,4
0,9	13,32	26,64	39,96	53,28	66,6	79,92
0,8	13,28	26,56	39,84	53,12	66,4	79,68
0,7	13,2	26,4	39,6	52,8	66	79,2
0,6	13,08	26,16	39,24	52,32	65,4	78,48
0,5	13,04	26,08	39,12	52,16	65,2	78,24
0,4	13	26	39	52	65	78
0,3	12,88	25,76	38,64	51,52	64,4	77,28
0,2	12,8	25,6	38,4	51,2	64	76,8
0,1	12	24	36	48	60	72
0	10	20	30	40	50	60

ГРАФИК ЗАВИСИМОСТИ ПРОЦЕНТА ЗАРЯДА ОТ НАПРЯЖЕНИЯ У ЯЧЕЙКИ LIFEPO4

С инструкцией к смарт экранам можно ознакомится на сайте https://batterycraft.ru/instructions/. Выбрав ваш тип информационного экрана.

Общие сведения о ваттметре и смарт экране:

- Все АКБ поставляются с предустановленными заводскими настройками и НЕ ТРЕБУЕТ дополнительной калибровки пользователем.
- Для точного отображения данных ваттметру необходимо пройти полный цикл разряда/заряда.

ИНСТРУКЦИЯ ПО РАБОТЕ С ПРИЛОЖЕНИЕМ **SMART BMS**

Воспользуйтесь инструкцией 5. подключению к АКБ на странице: https://batterycraft.ru/instructions/ выбрав в списке вашу модель аккумулятора.

РЕКОМЕНДАЦИИ ПО ХРАНЕНИЮ АКБ

6.1. Подготовка к хранению

- Уровень заряда перед хранением: 50-70% (точное значение указано в спецификации).
- Контроль напряжения:
 - Ежемесячно проверяйте напряжение на клеммах.
 - Если напряжение падает ниже рекомендуемого уровня: **немедленно дозарядите** батарею.

6.2. Условия хранения

- Оптимальное место: сухое, прохладное помещение с температурой выше 5°C.
- **Важно:** перед размещением на хранение сверьтесь с рекомендуемой температурой хранения.

6.3. Запрещенные условия хранения

• Не храните полностью разряженную батарею!

Любая аккумуляторная ячейка обладает эффектом саморазряда (постепенная потеря заряда). При падении напряжения ячеек **ниже 2,5B** происходит:

- Необратимая деградация элементов.
- Остаточное напряжение на АКБ недостаточно для правильного функционирования BMS.
- Не храните полностью заряженную батарею!

Ведет к необратимой деградации элементов (потере емкости)

<u>Глубокий разряд АКБ НЕ ЯВЛЯЕТСЯ ГАРАНТИЙНЫМ</u> СЛУЧАЕМ!

РЕКОМЕНДАЦИИ ПО ХРАНЕНИЮ АКБ

Дополнительные рекомендации

- 1. Для длительного (сезонного) хранения:
 - Отсоедините батарею от всех потребителей энергии.
 - Очистите корпус от пыли и загрязнений.

2. Перед возвратом в эксплуатацию:

- Проверьте напряжение.
- При необходимости выполните полный цикл заряда.

3. Визуальный контроль:

- Регулярно осматривайте АКБ на предмет:
 - Коррозии клемм.
 - Механических повреждений корпуса.

КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ АКБ

7.1. Компоненты батареи

Аккумуляторная батарея состоит из следующих ключевых элементов:

- Аккумуляторные ячейки формируют основную энергоемкость системы
- Плата BMS (Battery Management System):
 - Контролирует процессы заряда/разряда
 - Обеспечивает защиту батареи
 - Балансирует элементы.
- Токоведущие элементы:
 - Соединительные провода
 - Силовые шины
 - Внешние силовые клеммы

7.2. Принцип работы системы защиты

BMS выполняет следующие защитные функции:

1. Контроль напряжения каждой ячейки в реальном времени

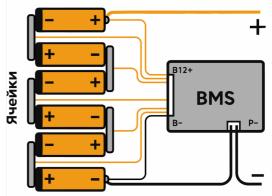
2. Защита от:

- Перезаряда (превышения максимального напряжения)
- Переразряда (падение ниже минимального напряжения)

3. Аварийное отключение:

 При критических ситуациях BMS размыкает силовую цепь через твердотельные ключи

КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ АКБ


- 7.3. Система балансировки ячеек **Функции балансира:**
 - Компенсация естественного разброса параметров
 - Увеличение эффективной емкости батареи

Принцип работы активного балансира:

- 1. Специальные конденсаторы поочередно подключаются к парам ячеек
- 2. Заряд перераспределяется:
 - От ячеек с повышенным напряжением
 - К ячейкам с пониженным напряжением
- 3. Циклический процесс продолжается до выравнивания напряжения
- 7.4. Конструктив аккумуляторной сборки Все компоненты размещены в защищенном корпусе и обеспечивают:
 - Стабильную работу в штатном режиме
 - Мгновенное отключение при аварийных ситуациях
 - Автоматическое поддержание баланса ячеек

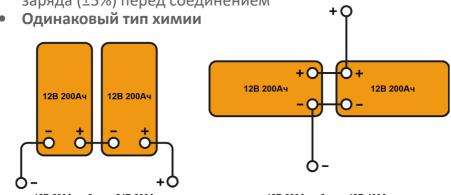
Важно: Любое

вмешательство во внутреннюю конструкцию батареи запрещено и приведет к потере гарантии.

ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ АКБ

8.1. НЕ ДОПУСКАЕТСЯ ИСПОЛЬЗОВАНИЕ В КАЧЕСТВЕ СТАРТОВОГО!!!!!!!!

- 1. Конструктивные ограничения:
 - Встроенная BMS рассчитана на максимальный ток разряда 30-300A (в зависимости от модели)
 - Пусковые токи стартеров (400-1200A) превышают допустимые значения
- 2. Последствия перегрузки:
 - Мгновенное срабатывание защитного отключения
 - Необратимый выход BMS из строя
 - Разрушение элементов
 - Повреждение вследствие перегрузки не является гарантийным случаем
- 3. На используемых нами ячееках LiFePO4 (в зависимости от модели) производитель заявляет от 2000 до 5000 циклов зарядки-разрядки при глубине разряда до 80%. При правильной эксплуатации срок службы АКБ LiFePO4 может составлять 10-15 лет.
- 8.2 Факторы влияющие на срок службы LiFePO4 AKБ:
- Глубина разряда (DoD): чем меньше глубина разряда, тем больше циклов выдерживает аккумулятор. Например, аккумулятор, разряжаемый на 50%, может прослужить значительно дольше, чем разряжаемый на 80% или 100%.
- Температурные условия: Экстремальные температуры (как низкие, так и высокие) негативно влияют на срок службы аккумулятора. Рабочая температура для LiFePO4 аккумуляторов составляет от -25°C до 55°C (рекомендуемая температура от 10°C до 35°C).
- Регулярное обслуживание: проверка состояния аккумулятора, чистка контактов, обеспечение хорошей вентиляции поддерживают аккумулятор в оптимальном состоянии.


ПРАВИЛА СОЕДИНЕНИЯ АКБ

- 9.1. Последовательное подключение
 - Максимальное напряжение системы:
 24В (2 АКБ по 12В) если к определенной модели не указанна дополнительная информация
 - Ограничение:
 - Большинство BMS не поддерживают последовательные подключения свыше 24В, тщательно сверяйтесь с техническими характеристиками
 - Превышение напряжения приведет к отключению защиты и возможному выходу АКБ из строя
- 9.2. Параллельное подключение

Условия корректной работы:

<u>Аккумуляторную батарею можно подключать параллельно</u> до достижения необходимой вам емкости.

• Обязательное требование: одинаковый уровень заряда (±5%) перед соединением + О

12В 200Ач х 2шт. = 24В 200Ач (последовательное соединение)

12B 200Aч x 2шт. = 12B 400Aч (паралельное соединение)

ТИПОВЫЕ НЕИСПРАВНОСТИ И ИХ УСТРАНЕНИЕ

10.1. Аварийное отключение из-за низкого напряжения

• Симптомы:

- Батарея внезапно отключается
- Экран ваттметра гаснет

• Причина:

 Напряжение упало ниже минимального порога (BMS активировала защиту от глубокого разряда)

• Решение:

Подключите АКБ к зарядному устройству

10.2. Короткое замыкание

• Симптомы:

- Мгновенное отключение АКБ
- Отсутствие индикации на ваттметре

• Причина:

- Превышение максимального тока (срабатывание защиты от КЗ или выход BMS из строя)
- Замыкание контактов между собой
- Переполюсовка при подключении

• Решение:

- Устраните короткое замыкание в цепи
- Подключите батарею к ЗУ для сброса защиты

ТИПОВЫЕ НЕИСПРАВНОСТИ И ИХ УСТРАНЕНИЕ

10.3. Отключение при подключении нагрузки

• Возможные причины:

Тип нагрузки	Характер проблемы	Решение
Ёмкостная (например, преобразователи с большими входными конденсаторами)	Скачок тока при заряде конденсаторов	1. Используйте предварительный заряд через резистор 2. Применяйте плавный пуск
Индуктивная (двигатели, реле)	Импульсы самоиндукции	 Установите защитные диоды Используйте фильтрующие конденсаторы

• Общий алгоритм восстановления:

- 1. Подключите АКБ к зарядному устройству для **сброса защиты**
- 2. Протестируйте работу на альтернативной нагрузке
- 3. Для проблемных нагрузок:
 - Рассчитайте пусковые токи
 - Установите дополнительную защиту

Дополнительные рекомендации

- Для сложных случаев:
 - Снимите **параметры срабатывания** с ваттметра
 - Сравните с характеристиками нагрузки
- Гарантийная поддержка:
 - При повторяющихся отключениях обратитесь в техническую службу производителя
 - Подготовьте данные:
 - Модель АКБ
 - Параметры нагрузки
 - Видеофиксацию проблемы (по возможности)

Важно: Все работы с нагрузкой проводите при **отключенной** батарее!

ГАРАНТИЙНЫЕ УСЛОВИЯ

Гарантийный срок

• **12 месяцев** с даты покупки при условии соблюдения правил эксплуатации

Не гарантийные случаи (повреждения вследствие):

1. Механического воздействия:

- Нарушение целостности корпуса
- Присутствие внутри корпуса следов ударов, не повлекшие его повреждение.
- Следы вскрытия или ремонта

2. Неправильной эксплуатации:

- Попадание жидкости внутрь корпуса
- Воздействие экстремальных температур (выход за пределы, указанные в спецификации)
- Использование в качестве пускового аккумулятора (п.8 инструкции)

3. Электрических перегрузок:

- Короткое замыкание
- Превышение максимальных токов заряда/разряда
- Подключение к системам с напряжением выше допустимого

4. Некорректного монтажа:

- Нарушение полярности подключения
- Параллельное соединение с АКБ другого типа
- Отсутствие температурного датчика (для моделей с обязательным его наличием)

ГАРАНТИЙНЫЕ УСЛОВИЯ

Для получения гарантийного обслуживания:

- Предоставьте:
 - 1. Гарантийный талон/Товарную накладную
 - 2. Неповрежденную заводскую пломбу
 - 3. Фото/видео повреждения (по требованию сервисного центра)

Рекомендации для сохранения гарантии:

- Регулярно проводите визуальный осмотр АКБ
- Используйте только специализированные зарядные устройства с фиксированным напряжением
- Соблюдайте режимы хранения (п.6 инструкции)

Производитель оставляет за собой право отказать в гарантии при наличии следов несанкционированного ремонта или модификаций.

ПРАВИЛА УТИЛИЗАЦИИ АКБ

Запрещено:

- Выбрасывать АКБ в бытовые отходы
- Сжигать или разбирать батарею самостоятельно
- Сливать электролит в канализацию/почву

Правильная утилизация:

- **1. Сдайте аккумулятор** в специализированный пункт приема:
 - Магазины электроники (многие принимают старые АКБ)
 - Автосервисы и центры обслуживания техники
 - Местные экостанции переработки

2. Как подготовить к сдаче:

- Заклейте клеммы изолентой
- Поместите в **неповрежденную упаковку** (если сохранилась)
- При транспортировке избегайте ударов

Почему это важно?

- Литий-железо-фосфатные элементы подлежат переработке на 90%
- Предотвращает:
 - Загрязнение почвы и воды тяжелыми металлами
 - Риск возгорания на мусорных полигонах

Куда обратиться?

• Узнайте адреса пунктов приема в интернете и местной администрации.

Ответственная утилизация сохраняет окружающую среду и позволяет повторно использовать ценные материалы из вашего аккумулятора.

+7 (499) 110-04-64 +7 (977) 853-04-88

https://batterycraft.ru/

https://battery-kom.ru/